p53-deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage.
نویسندگان
چکیده
In response to DNA damage, eukaryotic cells activate ATM-Chk2 and/or ATR-Chk1 to arrest the cell cycle and initiate DNA repair. We show that, in the absence of p53, cells depend on a third cell-cycle checkpoint pathway involving p38MAPK/MK2 for cell-cycle arrest and survival after DNA damage. MK2 depletion in p53-deficient cells, but not in p53 wild-type cells, caused abrogation of the Cdc25A-mediated S phase checkpoint after cisplatin exposure and loss of the Cdc25B-mediated G2/M checkpoint following doxorubicin treatment, resulting in mitotic catastrophe and pronounced regression of murine tumors in vivo. We show that the Chk1 inhibitor UCN-01 also potently inhibits MK2, suggesting that its clinical efficacy results from the simultaneous disruption of two critical checkpoint pathways in p53-defective cells.
منابع مشابه
p38 MAPK/MK2-mediated induction of miR-34c following DNA damage prevents Myc-dependent DNA replication.
The DNA damage response activates several pathways that stall the cell cycle and allow DNA repair. These consist of the well-characterized ATR (Ataxia telangiectasia and Rad-3 related)/CHK1 and ATM (Ataxia telangiectasia mutated)/CHK2 pathways in addition to a newly identified ATM/ATR/p38MAPK/MK2 checkpoint. Crucial to maintaining the integrity of the genome is the S-phase checkpoint that funct...
متن کاملDNA damage activates a spatially distinct late cytoplasmic cell-cycle checkpoint network controlled by MK2-mediated RNA stabilization.
Following genotoxic stress, cells activate a complex kinase-based signaling network to arrest the cell cycle and initiate DNA repair. p53-defective tumor cells rewire their checkpoint response and become dependent on the p38/MK2 pathway for survival after DNA damage, despite a functional ATR-Chk1 pathway. We used functional genetics to dissect the contributions of Chk1 and MK2 to checkpoint con...
متن کاملDistinct roles of ATR and DNA-PKcs in triggering DNA damage responses in ATM-deficient cells.
The cellular response to DNA double-strand breaks involves direct activation of ataxia telangiectasia mutated (ATM) and indirect activation of ataxia telangiectasia and Rad3 related (ATR) in an ATM/Mre11/cell-cycle-dependent manner. Here, we report that the crucial checkpoint signalling proteins-p53, structural maintainance of chromosomes 1 (SMC1), p53 binding protein 1 (53BP1), checkpoint kina...
متن کاملMice lacking protein phosphatase 5 are defective in ataxia telangiectasia mutated (ATM)-mediated cell cycle arrest.
Protein phosphatase 5 (Ppp5), a tetratricopeptide repeat domain protein, has been implicated in multiple cellular functions, including cellular proliferation, migration, differentiation and survival, and cell cycle checkpoint regulation via the ataxia telangiectasia mutated/ATM and Rad3-related (ATM/ATR) signal pathway. However, the physiological functions of Ppp5 have not been reported. To con...
متن کاملp38MAPK and MK2 pathways are important for the differentiation-dependent human papillomavirus life cycle.
Amplification of human papillomaviruses (HPV) is dependent on the ATM DNA damage pathway. In cells with impaired p53 activity, DNA damage repair requires the activation of p38MAPK along with MAPKAP kinase 2 (MK2). In HPV-positive cells, phosphorylation of p38 and MK2 proteins was induced along with relocalization to the cytoplasm. Treatment with MK2 or p38 inhibitors blocked HPV genome amplific...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer cell
دوره 11 2 شماره
صفحات -
تاریخ انتشار 2007